Ecosystem Services Based Adaptation to Climate Change: Why and How?

Photo credit @ Alamgir

Mohammed Alamgir ¹, Steve Turton¹ and Petina L. Pert^{1, 2}

¹Centre for Tropical Environmental & Sustainability Sciences, James Cook University, Australia ^{1,2} CSIRO, Land and Water Flagship, c/-James Cook University, Australia

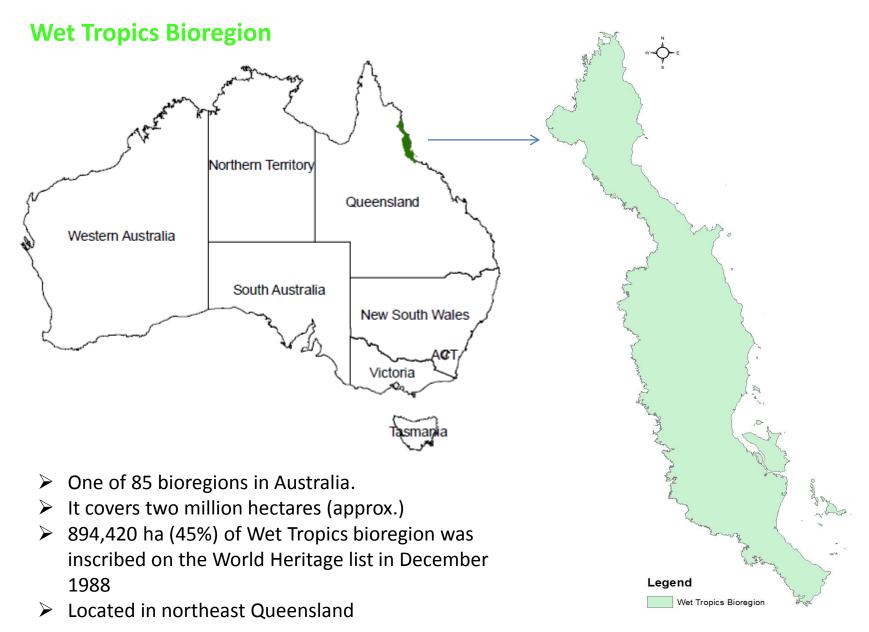
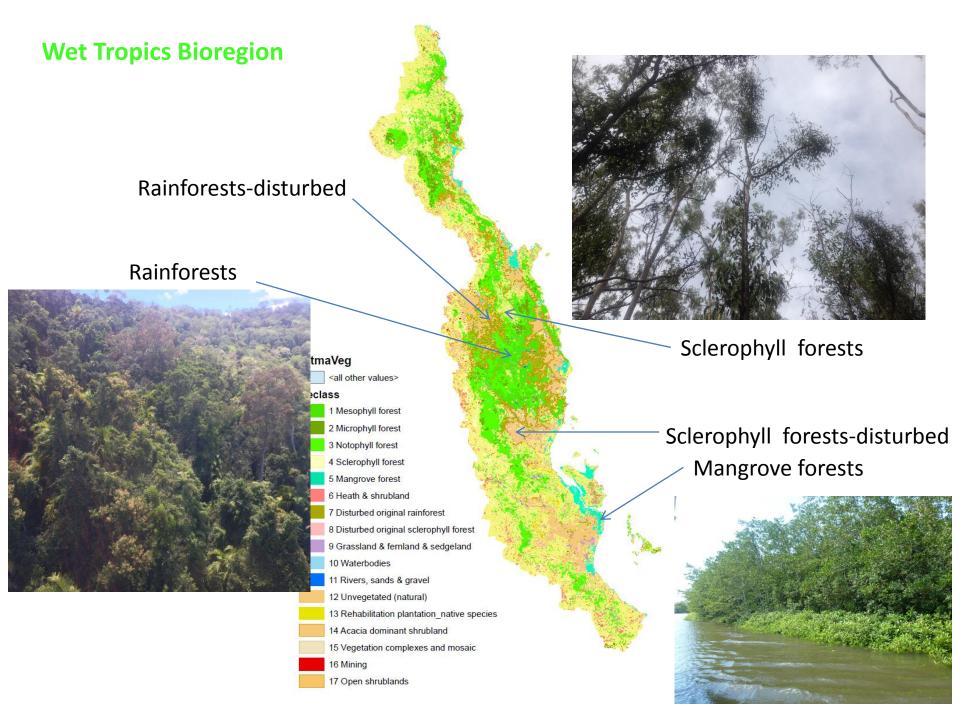


Fig. Wet Tropics Bioregion

Global scale significance of the Wet Tropics

- Second most irreplaceable World Heritage Area on the Planet
- Sixth irreplaceability based on all species, eighth based on threaten species among the protected areas in the globe
- More primitive plant taxa than any other area on the Earth. Primitive family Austrobaileyaceae is available only in the WT.
- ➤ Contribution to global biodiversity (% of the world's total found in the WT) Vascular plant species 1.7%, Mammal species 2.5%, Bird species 3.4%, Amphibian species 1.1%
- > The rainforests of the WT is one of the oldest rainforests on the Earth
- Catchment of Great Barrier Reef


Bertzky et al. 2013; Le Saout et al. 2013; Olson et al. 2000; Metcalf and Ford 2009; WTMA 2009; Stork et al. 2011; Hillbert et al. 2014; Commonwealth of Australia 1986; Government of Australia 2007

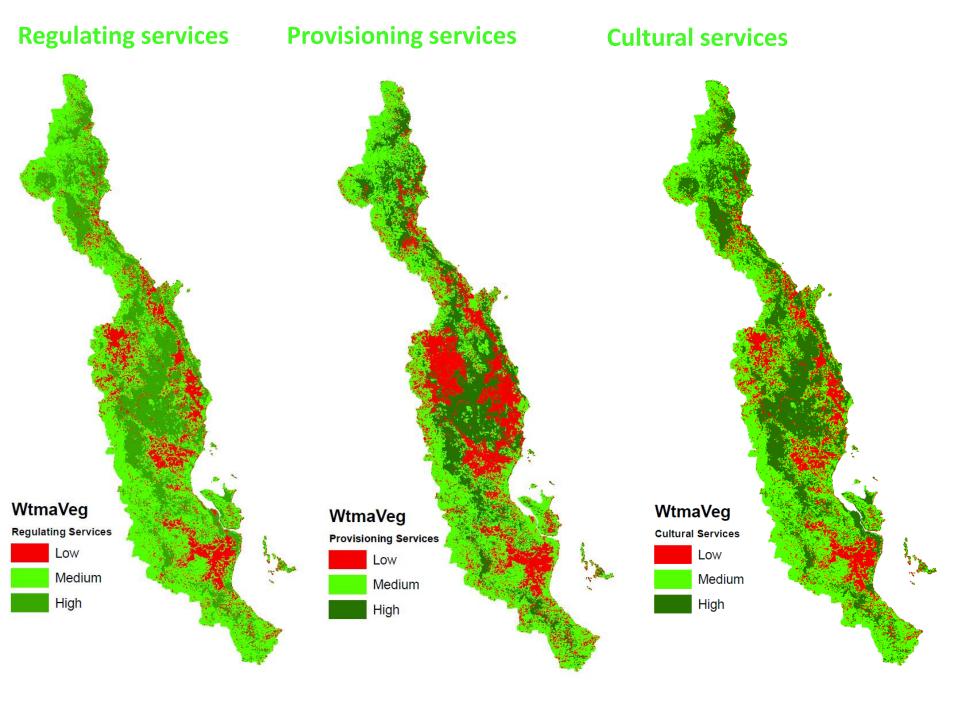
National scale significance of the Wet Tropics

- The largest remaining rainforests in Australia
- Contribution to Australia's biodiversity (% of Australia's total found in the WT)-vascular plants 26%, Conifers 37%, ferns-65%, birds-40%
- More than 400 plants and 76 animal species are rare, vulnerable or endangered
- More than 23% of tourism activity of Queensland although it is a bit larger than 1% of Queensland
- Indigenous heritage values- Queensland National Heritage Listing
- ➤ Added to the National Heritage List

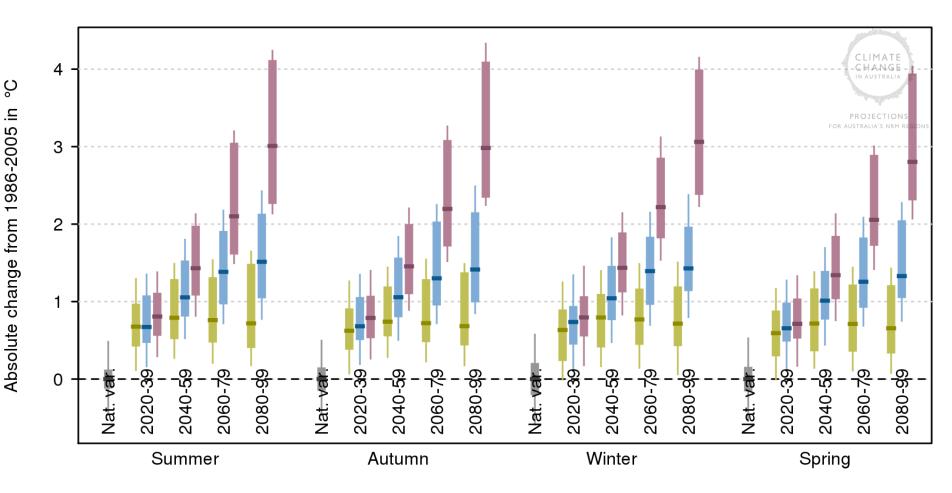
Capacities of ecosystem services supply

Peclass on Pand cover type	Ecological integrity	Abiotic heterogenity	Biodiversity	Biotic waterflows	Metabolic efficiency	Energy capture (Radiation)	Reduction of nutrient loss	Storage capacity (SOM)	Regulating services	Local climate regulation	Global climate regulation	Flood protection	Groundwater recharge	Air quality regulation	Erosion regulation	Nutrient regulation	Water purification	Pollination	Cyclone protection	Provisioning services	Livestooks	Fodder	Capture fisheries	Aquaculture	Wild foods	Timber	Wood ide	1	Biochemicals and medicines	Freshwater	Habitat	Cultural services	Recreation and Aesthetic values	Intrinsic value of biodiversity	Total value of ESS
1 Mesophyll forest	32	3		5	4	5	5	5	45	5	4	4	3		-	5	5	5	4	30	0	0	0	0	5	5	-	5	5	0	5	10	5	5	85
2 Microphyll forest	26	3		4	3	4	4	4	42	5	4	3	2	5	4	5	5	5	4	29	0	0	0	0	5	5	5	5	5	0	4	10	5	5	81
3 Notophyll forest	28	3	5	5	3	4	4	4	41	5	4	3	1	5	4	5	5	5	4	30	0	0	0	0	5	5	5	5	5	0	5	10	5	5	81
4 Sclerophyll forest	22	3	4	2	3	3	4	3	23	4	3	2	1	2	2	2	2	2	3	20	2	0	0	0	1	4	2	5	3	0	3	6	2	4	49
5 Mangrove forest	23	2	3	4	3	3	3	5	30	3	3	5	3	2	5	4	0	0	5	19	0	0	0	0	3	3	2	3	3	0	5	9	5	4	58
6 Heath & shrubland	30	3	4	4	5	4	5	5	20	3	3	2	2	0	0	3	4	2	1	11	2	0	0	0	1	1	2	2	0	0	3	6	3	3	37
7 Disturbed original rainforest	18	3	3	2	2	2	3	3	24	3	2	1	1	3	3	3	3	3	2	11	0	0	0	0	2	2	2	2	1	0	2	5	2	3	40
8 Disturbed original sclerophyll	16	3	3	1	2	2	3	2	11	2	1	1	1	1	. 1	1	1	1	1	10	0	0	0	0	1	2	1	2	2	0	2	4	2	2	25
9 Grassland, fernland & sedgelar	23	3	3	3	3	3	4	4	20	2	1	1	1	0	5	5	5	0	0	7	3	0	0	0	2	0	0	0	0	0	2	4	2	2	31
10 Waterbodies	21	3	3	0	4	4	3	4	7	2	1	1	2	0	0	1	0	0	0	14	0	0	3	0	4	0	0	0	0	5	2	9	5	4	30
11 Beaches, Sands & gravel	10	3	3	1	1	1	0	1	14	0	0	5	1	0	0	3	3	0	2	3	0	0	0	0	0	0	0	1	0	0	2	7	5	2	24
12 Unvegetated (natural)	6	3	3	0	0	0	0	0	4	0	0	1	1	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	4	4	0	8
13 Rehabilitation plantation_nati	10	2	3	1	1	1	1	1	15	3	2	1	1	1	. 1	2	1	2	1	14	0	0	0	0	1	3	2	3	2	0	3	6	3	3	35
14 Acacia dominant shrubland	13	2	2	0	1	2	3	3	8	1	1	0	1	0	1	1	1	2	0	9	2	0	0	0	1	1	2	1	0	0	2	4	2	2	21
15 Vegetation complexes and mo	16	3	3	2	2	2	2	2	13	2	2	0	1	0	2	2	2	2	0	7	2	0	0	0	1	0	1	1	0	0	2	4	2	2	24
16 Mineral extraction sites	4	2	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17 Open shrublands-exotics dom	10	1	1	0	2	2	2	2	7	0	1	0	0	0	2	2	2	0	0	4	2	0	0	0	0	0	1	1	0	0	0	1	0	1	12

Scale for assessing capacities:


0= no relevant capacity

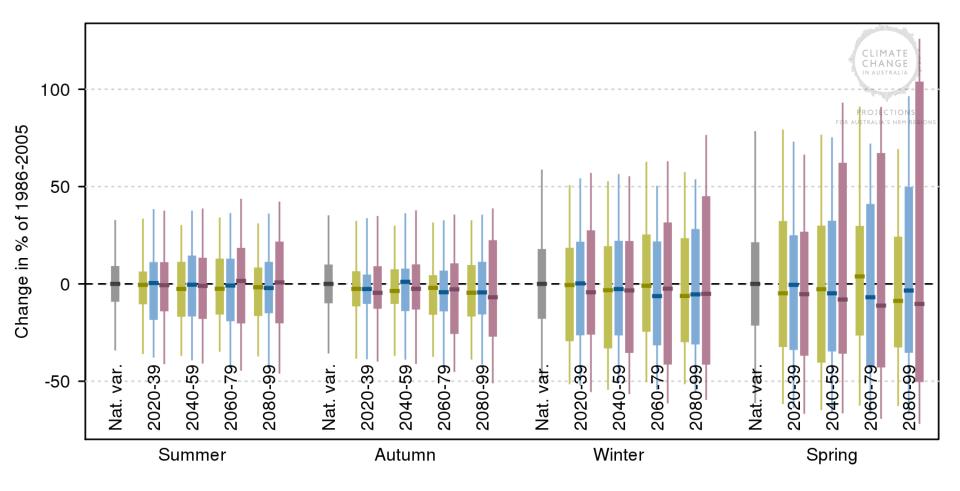
1= low relevant capacity


2= medium relevant capacity

3= high relevant capacity

4= very high relevant capacity

Climate change for Wet Tropics: Seasonal Temperature Change


Model: CMIP5

Left to right: RCP2.6, RCP4.5, RCP8.5

The horizontal line indicates the median

CSIRO climate change tools

Climate change for Wet Tropics: Seasonal Precipitation Change

Model: CMIP5

Left to right: RCP2.6, RCP4.5, RCP8.5

The horizontal line indicates the median

CSIRO climate change tools

Examples of climate change impacts on ecosystem services of the Wet Tropics

Ecosystem service	Impact	Impact trend (+/-)
Climate regulation	Upland forests will release stored carbon to the atmosphere due to temperature rise	_
Water regulation and Water provision	30% additional water are added by cloud strippers in the WT, which will be dramatically impacted by temperature rise	_
Cyclone protection	More pest and disease in mangroves, changing spatial redistribution of mangroves, salinity intrusion	_
Habitat provision	More than 50% of upland rainforests habitat will be lost even at 1°C temperature rise	_
Timber provision	More pest and diseases, will favour vines, fast growing trees and invasion; may positively impact growth rate due to elevated CO ₂	-/+

Examples of ecosystem service based adaptation options to climate change Regulating services

Ecosystem	Target impacts	Adaptation options	Opportunities
services			
Climate	Temperature rise;	Upland forests conservation;	Habitat for biodiversity; water
regulation	More intense	Planting relatively higher	regulation; landscape
	tropical cyclone	wood density trees;	rehabilitation; soil improvement
		agroforestry	
Water	Temperature rise;	Avoiding disturbances in	Native biodiversity enrichment;
regulation	Changing pattern of	upstream vegetation;	carbon credit; habitat connectivity;
	rainfall	Riparian restoration, Forest	credit for biodiversity
		restoration with high	conservation; recreation and
		regulation capacity;	aesthetic value; native biodiversity
		Protection of upland forests	habitat
Cyclone	More intense	Mangroves protection;	More blue carbon; protection of
protection	tropical cyclone; sea	Facilitation of inward	coastal community &
	level rise; salinity	movement of mangroves;	infrastructure, eco-tourism
	intrusion	Restoration of littoral forests	
		and coastal plantation with	
		native species	

Rebbeck et al. 2007, Curran et al. 2008, Battaglia 2011, Murphy et al. 2012; Baral et al. 2012, Palmer et al. 2008, Scott et al. 2008, Hansen et al. 2003, Robledo & Forner 2005, Sáenz & Mulligan 2013; Spalding et al. 2014, Semeniuk 1994, Alongi 2008, Ross et al. 2000, McIvor et al. 2012a

Usefulness of mangroves for coastal protection and erosion control

- Reduce wave energy and water velocity, and erosion
- Increase sedimentation and reduce movement of sediments
- ➤ Effective in trapping fine sediment particles
- Increase soil cohesion and act as a barrier between soil and water
- ➤ Wave heights can be reduced by 13% to 66% over 100 m of mangroves
- ➤ Storm surge height can be reduced between 4 to 48 cm per kilometre of passage through mangroves

Gedan et al. 2011, Shepard et al. 2011, Spalding et al. 2014; Wolanski 1995, Young & Harvey 1996; McIvor et al. 2012a; Krauss et al. 2009, McIvor et al. 2012b; Zhang et al. 2012

Examples of ecosystem service based adaptation to climate change

Provisioning services

Ecosystem services	Target impacts	Adaptation options	Opportunities
Habitat provision	Temperature rise	More ecological connectivity	Carbon credit
Timber provision	More intense tropical cyclone	Planting native tropical cyclone resistant trees; exotics from cyclone prone provenances; use of reduced impacts logging	Secure productivity even after tropical cyclone

Ranking of cyclone resistance trees*

Scientific name	Common name	Cyclone resistance
Elaeocarpus angustifolius/grandis	Silver quandong	Very Good
Eucalyptus cloeziana	Gympie messmate	Good
Eucalyptus grandis	Rose gum(flooded gum)	Good
Eucalyptus pellita	Red mahogany (pellita)	Good
(young trees < 8 yo)		
Eucalyptus pellita	Red mahogany (pellita)	Good
(older trees > 8 yo)		
Flindersia brayleyana	Queensland maple	Good

(*assuming category 2 cyclone) based on post tropical cyclone Yasi field observations by DAFF (after Timber Queensland 2012, full list is available in www.timberqueensland.com.au)

Conclusion

- Adaptation should be ecosystem service based
- > Opportunities of multiple benefits
- Scale matter

Acknowledgements

